NF90/ILF3 is a transcription factor that promotes proliferation over differentiation by hierarchical regulation in K562 erythroleukemia cells

نویسندگان

  • Ting-Hsuan Wu
  • Lingfang Shi
  • Jessika Adrian
  • Minyi Shi
  • Ramesh V Nair
  • Michael P Snyder
  • Peter N Kao
چکیده

NF90 and splice variant NF110 are DNA- and RNA-binding proteins encoded by the Interleukin enhancer-binding factor 3 (ILF3) gene that have been established to regulate RNA splicing, stabilization and export. The roles of NF90 and NF110 in regulating transcription as chromatin-interacting proteins have not been comprehensively characterized. Here, chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) identified 9,081 genomic sites specifically occupied by NF90/NF110 in K562 cells. One third of NF90/NF110 peaks occurred at promoters of annotated genes. NF90/NF110 occupancy colocalized with chromatin marks associated with active promoters and strong enhancers. Comparison with 150 ENCODE ChIP-seq experiments revealed that NF90/NF110 clustered with transcription factors exhibiting preference for promoters over enhancers (POLR2A, MYC, YY1). Differential gene expression analysis following shRNA knockdown of NF90/NF110 in K562 cells revealed that NF90/NF110 activates transcription factors that drive growth and proliferation (EGR1, MYC), while attenuating differentiation along the erythroid lineage (KLF1). NF90/NF110 associates with chromatin to hierarchically regulate transcription factors that promote proliferation and suppress differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteomic analysis of interleukin enhancer binding factor 3 (Ilf3) and nuclear factor 90 (NF90) interactome.

Interleukin enhancer binding factor 3 (Ilf3) and Nuclear Factor 90 (NF90) are two ubiquitous proteins generated by alternative splicing from the ILF3 gene that provides each protein with a long and identical N-terminal domain of 701 amino acids and a specific C-terminal domain of 210 and 15 amino acids, respectively. They exhibit a high polymorphism due to their posttranscriptional and posttran...

متن کامل

Knockdown of ZNF268, which Is Transcriptionally Downregulated by GATA-1, Promotes Proliferation of K562 Cells

The human ZNF268 gene encodes a typical KRAB-C2H2 zinc finger protein that may participate in hematopoiesis and leukemogenesis. A recent microarray study revealed that ZNF268 expression continuously decreases during erythropoiesis. However, the molecular mechanisms underlying regulation of ZNF268 during hematopoiesis are not well understood. Here we found that GATA-1, a master regulator of eryt...

متن کامل

Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3.

Arginine methylation is a common post-translation modification found in many proteins. Protein-arginine methyltransferase I (PRMT1) contributes >90% of type I protein-arginine methyltransferase activity in cells and tissues. To expand our knowledge on the regulation and role of PRMT1 in cells, we used the yeast two-hybrid system to identify proteins that interact with PRMT1. One of the interact...

متن کامل

Cyclic nucleotide Response Element Binding protein (CREB) activation promotes survival signal in human K562 erythroleukemia cells exposed to ionising radiation/etoposide combined treatment.

Anticancer therapy addresses the destruction of tumour cells which try to counteract the effect of drugs and/or ionising radiation. Thus the knowledge of the threshold over which the cells do not resist such agents could help in the setting up of therapy protocols. Since a key role was assigned to Cyclic nucleotide Response Element Binding protein (CREB) multigenic family (which is composed of ...

متن کامل

NF90 coordinately represses the senescence-associated secretory phenotype

A hallmark trait of cellular senescence is the acquisition of a senescence-associated secretory phenotype (SASP). SASP factors include cytokines and their receptors (IL-6, IL-8, osteoprotegerin, GM-CSF), chemokines and their ligands (MCP-1, HCC4), and oncogenes (Gro1 and Gro2), many of them encoded by mRNAs whose stability and translation are tightly regulated. Using two models of human fibrobl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018